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LE'ITER TO THE EDITOR 

Finite size effects in conformal field theories and non-local 
operators in one-dimensional quantum systems 

A D Mironovt and A V Zabrodinz 
t P N Lebedev Physical Institute, Leninsky pr.53, 117924, Moscow, USSR 
$ Institute of Chemical Physics, Kosygina st., 117334, Moscow, USSR 

Received 3 October 1989, in final form 8 March 1990 

Abstract. We generalise the well known connection between critical exponents and finite 
size effects in conformal field theories to non-local operators and find the long-wave 
asymptotics of vacuum expectation values of some non-local operators in one-dimensional 
quantum systems. 

Recently the method to find out the long-wave asymptotics of correlation functions of 
various local operators in one-dimensional quantum systems has been proposed [ 1-51 .  
This method is based on the investigation of finite size effects in conformal field theories 
[ 6 , 7 ] .  The idea is to use the fact that at zero temperature one-dimensional models of 
quantum field theory are conformally invariant at large distances. 

of primary fields ba,n [ 8 ]  are connected with 
the energies E t  of the lowest excitations 14) such that (vac/+[+) # 0, by the following 
relation [ 6 ] :  

(1) 

Here h, A, + is the scaling dimension of the operator +, L is the length of the 
system, U is the sound-wave velocity in the system (the group velocity at the Fermi 
surface) and E';"' is the energy of the ground state. The long-wave asymptotics of the 

field correlator (for simplicity, we consider only the equal time correlators 
throughout this paper) has the form [ 5 , 6 ] :  

More precisely, the dimensions A, 

E t  - E r' = 2 m h , /  L. 

(+(x)~(O)) -cos(  P"X)X-'h, (2) 
where P4 is the momentum of the state 14). Non-zero P4 implies a gap in the 
momentum spectrum. 

Similarly, the central charge c of the corresponding Virasoro algebra is related to 
the L-' correction to the ground state energy [ 7 ] .  For the simplest one-component 
systems (as one-dimensional Bose or Fermi gas or s = Heisenberg antiferromagnet 
etc) one obtains c = 1 [ l ,  2 , 4 , 5 , 7 ] .  It follows that all these theories belong to the 
universality class of the one-component Gaussian model [ 9 ] .  The dimensions of local 
primary operators &,, in the Gaussian model depend on the only continuous parameter 
R (which coincides with compactification radius in string theory) and have the form 

h , = n 2 / R 2 + m 2 R 2 / 4  n, m are integers. (3)  
The value of R depends on characteristics of the model [ 5 ] :  R 2  = 8.rrN/uL, where N 
is the number of particles in the system (or the number of reversed spins in the case 
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of an antiferromagnet). The thermodynamic limit corresponds to L-, CO, N -+ 00, 

N I L  = p = constant. 
We will show that a simple extension of the above method allows one to find out 

the correlator of some non-local operators in one-dimensional systems. 
To begin with, let us consider the X X Z  Heisenberg antiferromagnet with the 

standard Hamiltonian 

(4) 
,. l L  

2 , = I  
H , = - - C  ( ala;+, +uTil+f+l -cos(y)u;u:+I) o s y < . r r  

and periodic boundary conditions. 

non-local operators: 
It is interesting [ 10, 111 to find out the vacuum expectation values of the following 

P 

s ~ , ,  = n U;= exp{i.rrq(x, y ) )  
, = r  

q(x, y )  being the operator of the number of reversed spins at the sites on the way from 
x to y,  and 

T,, = Px,r+l)4x+l),x+2,. . . ~ , - , ) , ~ l x  ( 6 )  

where PA, = $( 1 + a,u, ) denotes the spin exchange operator at the sites x and y. The 
operator T,, acts by a cyclic permutation of the sites along the segment [x,y]: 
x + x + 1, x + 1 -, x + 2 ,  . . . , y - 1 -, y ,  y + x. Due to the translational invariance, 
(vac\S,, \vac) and (vac1 T,, /vac) depend only on Ix - yl. Here \vac) denotes the ground 
state of the antiferromagnet with periodic boundary conditions. 

Let us consider an extended Hilbert space containing all states of the spin chain 
with different number of sites and different boundary conditions simultaneously. We 
introduce the following operators acting in this extended space: the operator a:, 
creating a new site of spin s (s = * l )  between the sites x and x + 1 of the initial chain; 
the operator b,, annihilating the site x (of spin s,) in the case of s, = s and giving zero 
if s, = -2 .  Thus, a:, acts from the sector of the extended Hilbert space corresponding 
to the chain with L sites to the sector corresponding to L +  1 sites. Quite similarly, b,, 
changes the number of sites from L to L - 1 .  We also introduce the operator 

j = x  

which connects the sectors corresponding to periodic and antiperiodic boundary 
conditions. Clearly, 

TX, = c dJ.”. @ a )  

SXY = sxsy. ( 8 b )  

v 

Let us denote by IL, +> (IL, -)) the ground state of the spin chain with L sites and 
periodic (antiperiodic) boundary conditions (in the thermodynamic limit these states 
coincide with ]vac), but we are interested in finite size corrections - L - ’ ) .  One can 
easily check that 

(L-l ,+Ib, ,IL,+l)fO (L+l,+la:,\L,+)#O (L ,  -\SAL, +) # 0. ( 9 )  
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This means that in order to find out the asymptotics at Ix-yl>> 1 of (vaclT’,lvac) = 
2 ( ~ ~ ( + ~ ~ b , ~ , + ~ , )  (obviously, ( a ~ ~ + l ) b , , ( + l ~ > = ( a ~ ~ - ~ ~ b ~ ~ ~ - ~ ~ ) )  and (vaclS&ac>= 
(vaclS,S,Ivac> we can use the formula ( 2 )  with the scaling dimensions being determined 
from the relation (1 ) .  In other words, one may consider the states (L ,  -> and IL+ 1,  +> 
as ‘excitations’ over the ‘true’ ground state IL, +). It is sufficient to calculate the energies 
of these excitations up to the first order in L-I. One can do this using the well known 
exact solution. Namely, the straightforward calculations based on the Bethe equations 
in large L limit give 

( v a c ~ ~ , , ~ v a c ) - ~ x - ~ ~ - ~  (100) 

(vaclexp{i.rrq(x, y)}lvac) - cos[.rr(x -y)/2]1x -yl-* ( lob)  

where p = R-2/2, A = R2/8 and R 2 =  2.rr( .rr - y ) - ’  coincides with the inverse scaling 
dimension of the operators U’, u2 [ 1,4]. Let us note that similar results for the energy 
shifts were obtained in [ 11  by numerical estimations. 

Certainly, there are many other ‘lowest’ excitations over the ground state and their 
energies give the full spectrum of scaling dimensions of the primary fields in the 
extended (non-local) Gaussian model [12]. It turns out that this spectrum is described 
by the same formula (3) but with half-integer n and in. In particular, b,, can be 
identified with the non-local operators & 1/2,0 in the extended Gaussian model [9]. 

Note that in the case of the X X X  antiferromagnet ( y  = 0 in (4))  the operator S ,  
has the scaling dimension Q and coincides with the spin field in conformal field theory 

The same approach applies [5] to the continuous model of a spinless Bose or Fermi 
~131.  

gas with the Hamiltonian 

L 

f i 2  = IoL dx W * ( x ) W ( x ) + t g  [[ dx dy ~ * ( x ) ~ * ( Y ) V ( x - y ) ~ ( x ) ~ ( Y )  ( 1 1 )  
0 

where g>O and V(x) is some potential of pairwise interaction (repulsion) of quite 
general form. It is hard to formulate the necessary and sufficient conditions for the 
absence of the gap, in terms of the potential V(x). We are convinced, however, that 
the class of potentials in ( 1 1 )  leading to the gapless sound-type spectrum is quite 
representative. 

Indeed, the cases of small and large constants g in (1) have been studied in the 
literature. In [ 141, where the case of small g in Fermi systems was studied perturbatively, 
it was concluded that the correlators behave as a power law and no gap emerges. The 
case of long-range V(x) and large g (strong repulsion) was considered in [lo, 151. In 
this case, the absence of the gap becomes quite obvious. Indeed, independently from 
V(x), the particles form a regular ‘dynamical lattice’ (the so-called Wigner crystal) 
with sound-type low-energy excitations. On the other hand, there exist several exactly 
solvable models which possess a gapless spectrum. These are, for example, the model 
with delta-shape potential and that with the potential V(x) = x - ~  (the Sutherland model 
1.161). Evidently, the gap will not appear when performing small deformations of the 
Sutherland potential which do not entail a qualitative rearrangement of the ground state. 

Now the analogue of the operator S,. in the systems with Hamiltonian ( 1  1) is given 
by just the same expression as on the right-hand side of the formula ( 5 )  where now 
q(x, y )  is the operator of the number of particles on the segment [x, y]. We have (at 
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where 0 = 2R-'= u(47rp)-' is the critical exponent of the correlator of the bosonic 
fields $ [5, lo], p = N/L denotes the density of particles and U is the same quantity 
as in (1). 

The operator S accomplishes the Jordan-Wigner transformation from the bosonic 
operators qtl to the fermionic ones (CIF:  

This fact allows one to identify $F with the non-local operator 4,,1,2 in the extended 
Gaussian model and calculate the field correlator in the fermionic model (11): 

(14) 

In the general case the spectrum of scaling dimensions in the Fermi gas (1  1) is described 
again by the formula (3)  with the following conditions: if n is even, rn is an integer 
and if n is odd, rn is half-odd integer. 

-a -  1 / 1 4 o )  
$ T ( x, $F(Y ) Ivac) - cos( 7rp I - Yl)  1 - Y I 

A detailed version of this letter will be published elsewhere. 

One of us (AZ) is grateful to A A Ovchinnikov for useful discussions. 
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